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Errors in Deformation-Density and Valence-Density Maps: 
The Scale-Factor Contribution 
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A formulation for the variance-covariance estimate of the deformation or valence density is given for a 
centrosymmetric crystal, taking into account correlations with the scale factor, when this is determined 
by the usual scaling procedure. It is shown that, when heavy atoms are present in the crystal, the scaling 
procedure is likely to result in better precision than an independent experimental determination of the scale 
factor. 

Most experimental studies of the charge density distri- 
bution in crystals deal with the deformation density 

Ap(r) = po~(r)/k -- p4r) (1) 

where ~ is the Fourier transform of the unsealed 
observed structure factors F~o exp(ia), k is a scale 
factor and Pc is the density calculated in the spherical- 
atom approximation. Pc depends on the positional 
and thermal parameters Pi, which are generally 
obtained by least-squares refinement from neutron or 
high-angle X-ray data. 

In a previous study of the accuracy of Ap (Rees, 
1976), statistical independence of all the quantities 
F~, Pi and k was assumed. However, when the usual 
scaling procedure is used to determine k, the correlation 
between k and the Pi'S (especially the temperature 
parameters) cannot be neglected, as was emphasized 
by Stevens & Coppens (1976). A formulation taking 
such correlations into account will be given here. 

and Pc are obtained by Fourier transformation 
of F,~ and F c, respectively, at a given resolution charac- 
terized by H m a  x = 2 sin 0max/2: 

p(r) = ~ C(H,r) F(H) (2) 
H<Hmax 

2 " 
C(H,r) = V'~i= cos 2x(Ht . r - -a  t) 

1 

(sum over n crystallographically equivalent reflections). 
When the same set of reflections as in the Fourier 

summations (2) is used to determine the scale factor k, 
the least-squares adjustment of the observed and 
calculated structure factors yields the value: 

k =  Z wF~F c~ Z wF~ (3) 
H<Hmax H<Hmax 

with: w = [cr(Fg)/k] -2. 
By substitution into (1), differentiation, and some 

rearrangement, the following expression is obtained for 
the covariance of dp at two points r A and r e, in the 

case of a centrosymmetric structure (in the non- 
centrosymmetric case, the error in the phases a must 
be considered): 

cov[dp(rA), dp(rB)] = Z {C(H,rA) C(H,rn) 
H<Hmax 

x e2[F~o(H)]/k z } + [Po(rA)Po(rn)- Po(rA)pc(rB) 

-- po(rn)pc(rA)laZo(k)/k z 

+ Y ~. [Ai(rA)Aj(rB)cov(Pi, Pj)] + 
i j 

+ Po(r ~)Po(rB) ~modo~(k)/k 2 (4) 

where: Po = p~,/k; 

(5) 

a2o(k)lk2= 11 Z wFc 2 
H<Hmax 

H ax ~ P J  H<Hmax 

(6) 

wF~ z. (7) 

Note that the contribution of F(000), (the average 
electron density), which is known without error on an 
absolute scale, is not included in Po in (2). 

The variance of Ap is given by (4) where r A ---- r s. 
This equation applies also when Ap is the valence 
density: in this case F c in (5) must be replaced by the 
structure factor of the core electrons. 

a2o(k) is the part of the variance of k due to the 
uncertainty in the Fo~'S. The corresponding contribution 
to the uncertainty of Ap is generally negative, because 
of the correlations introduced by the scaling procedure, 
which are responsible for the negative part in the 
second term of (4). The correlation between k and the 
Pi'S is expressed by the second term of (5) and tends 
also to reduce the uncertainty, since the two terms of 
(5) are generally of opposite sign (an increase in Pc 
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Table 1. Model dependence of the scale factor in C r ( C O ) 6  

a, b, c and d are the centres of Gaussian charge distributions on the C r - C - O  bond axes, at the following distances from the Cr nucleus: 
(a) 0.65 A (chromium asphericity), (b) 1.35 A (carbon lone pair), (c) 2.50 A (CO bonding), (d) 3-50 A (oxygen lone pair). 

Charges 

Model Cr C 0 a b c d (Ak/k) × 103 

1 0 0 0 0 0 0 0 0 
2 +0.20 0 0 0 0 0 0 2.1 
3 0 +0-20 0 0 0 0 0 0.1 
4 0 0 - 0 . 2 0  0 0 0 0 - 1 . 3  
5 +0.15 +0.09 - 0 . 1 2  0 0 0 0 0.8 
6 -0 .15  +0.25 +0.07 +0-05 - 0 . 1 0  -0 .15  - 0 . 1 0  0-2 
7 -0 -57  +0-44 +0.25 +0.12 - 0 . 2 2  - 0 . 3 0  - 0 . 2 0  - 1 - 4  

results in a decrease of k). The only part of the un- 
certainty of k which makes a positive contribution 
is thus that due to the inadequacy of the free-atom 
model used in the scaling procedure, and is expressed 
by the last term of (4). 

The preceding equations were applied to the case of 
chromium hexacarbonyl (Rees & Mitschler, 1976). The 
deformation density Ap was computed with a cut-off 
value Hma x = 2 sin 0max/~. = 1.52 A -1. 

Omodel(k ) was estimated from structure-factor 
calculations with different models, which are sum- 
marized in Table 1. The spherical free-atom model 
(model I) is taken as reference. Charged spherical 
atoms are considered in models 2 to 5. Scattering 
factors of a partially occupied valence shell (2p 
electrons for C and O, 3d for Cr) were used in those 
calculations. The charges of model 5 are the net atomic 
charges, as obtained by a numerical integration pro- 
cedure (Rees & Mitschler, 1976). In models 6 and 7, 
spherical charge distributions were placed on the bond 
axes, at the locations experimentally observed in the 
deformation-density maps, with a Gaussian form 
factor, exp(--6 sin 2 0/)],2). The charges of model 6 result 
from an approximate integration of the corresponding 
peaks of the deformation density. Note that models 
5, 6 and 7 describe a neutral molecule. From 
the dispersion of the values of the scale factor of 
the table, amooet(k)/k = 0.002 seems a reasonable 
estimate. 

Since the other contributions to a(k) can only 
reduce the error of Ap, it is interesting to note that the 
precision of the scaling procedure is better than that 
which can be reasonably expected from an experimental 
determination of the scale factor [a(k)/k ,,~ 0.01 
(Stevens & Coppens, 1975)]. This, however, is because 
of the presence of the heavy chromium atom. A test 
calculation on carbon monoxide (Hma x = 1.5 A-l ;  
mean square amplitude of motion: U = 0.015 A 2) 
showed that the scale factor obtained with the free- 
atom model was in excess by 3.8%, compared with 
the Hartree-Fock molecule (McLean & Yoshimine, 
1967). This error is not very dependent o n  nmax,  but 

becomes somewhat smaller (2.5%) when a larger 
thermal motion (U = 0.06 A 2) is considered. 

Fig. 1 shows the various contributions to the esti- 
mated standard deviation of Lip along one of the bond 
axes in Cr(CO)6. The dashed curves show the effect 
of the correlation of the scale factor with the observed 
intensities (curve a) and the parameters Pi (curve b). 
The former is seen to be negligible but the latter is 
important in the heavy-atom region. Both are negative, 
as discussed above. The contribution of O'model(k ) is 
predominant within about 0.3 A from the chromium 
nucleus, but is generally negligible elsewhere. 
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Fig. 1. Error estimate in Cr(CO)6 , along one bond axis, The 
different contributions to a(Ap) are shown. (a) Uncertainty due 
to errors in F o. Full line: no correlation with the scale factor 
assumed. Dashed line: scale factor determined by least-squares 
fit. (b) Uncertainty due to errors in the positional and thermal 
parameters• Full line: no correlation with the scale factor. 
Dashed line: scale factor by least-squares fit. (c) Uncertainty 
due to the use of the free-atom model in the determination of the 
scale factor [a _ .(k)/k = 0.0021. (d)Total  estimated standard 

• . m o o e l  

dewat~on of zip. 
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Strukturm6glichkeiten fiir Pentahalogenide mit Doppeloktaeder-Molekiilen 
(MXs) 2 bei dichtester Packung der Halogenatome 

VON ULRICH MULLER 

Escuela de Qu[mica, Universidad de Costa Rica, San Jos~, Kosta Rika* 

(Eingegangen am 26. Oktober 1976; angenommen am 3. Oktober 1977) 

The crystal structures of the dimeric pentahalides (MXs) 2 have a close-packed arrangement of halogen atoms 
in which one fifth of the octahedral holes are occupied by metal atoms. From considerations of the 
geometrical possibilities of arranging the molecules and thereby resulting symmetry restrictions, the 
possible space groups and structures are elucidated with the aid of group-subgroup relationships. It is 
shown that only certain space_ groups can be achieved. Among the centrosymmetric space groups these 
include: 1. C2/m, C2/c and C1 for hexagonal close packing when octahedral holes are occupied between 
layers A and B but not between B and A; 2. Pnma, Pnmn, Pnab, C2/m, P2/m_, P2~/m, P21/a and Pl for h.c.p. 
when holes between all pairs of layers are occupied; 3. P2~/m, P2~/a and P1 for the double hexagonal close 
packing; 4. I41/a, Bbmb, Fddd and the monoclinic and triclinic space groups for cubic close packing. The 
more important arrangements are illustrated and their expected cell dimensions are given. The results are com- 
pared with the known structures of the pentachlorides of Nb, Ta, Mo, W, U and Re, (NbBrs):, fl-(PaBrs)2, and 
also (WSC14)2 and (WSBr4) 2. It is deduced that the previously published structure of niobium pentaiodide 
is probably in error. Predictions are made for likely structures of (Tals) 2, a-(PaBrs) 2, (Pals) 2 and (UBrs) 2. 

Bei Bemiihungen in der Vergangenheit, Verwandt- 
schaftskriterien fill" Kristallstrukturen aufzustellen und 
die Strukturen systematisch zu ordnen, wurden 
Symmetriebeziehungen meist nur wenig beachtet. Erst 
naehdem Neubiiser & Wondratschek (1966, 1969)eine 
Liste der Gruppe-Untergruppe-Beziehungen der 
kristallographisehen Raumgruppen vorgelegt haben, 
wurde von B~nighausen (1975) damit begonnen, 
systematische Strukturvergleiche aufgrund von Sym- 
metriebetrachtungen anzustellen (B~irnighausen, Klee 
& Wondratschek, 1975). Die Anstrengungen konzen- 
trierten sich bisher darauf, Struktur~ihnlichkeiten 
versehiedener Verbindungen aufzuzeigen, deren 
Symmetrie fiber Gruppe-Untergruppe-Beziehungen 
verwandt ist. Diese Beziehungen lassen rich aber auch 
heranziehen, um vorauszusagen, welche Raumgruppen 
iiberhaupt mrglich sind, wenn eine Verbindung 
gegebener Zusammensetzung unter Einhaltung be- 
stimmter Randbedingungen kristallisieren soll. Dies 
geschieht nachfolgend am Beispiel der Pentahalogenide 

* Gegenw~xtige Adresse: Fachbereich Chemic der Universitiit 
Marburg, Lahnberge, D-3550 Marburg, Deutschland. 

mit dimerer Molekiilstruktur (MXs) 2. Diese Molekiil- 
struktur ist charakteristisch fiir Metallpentahalogenide 
mit Ausnahme der Fluoride (weitere Ausnahmen sind 
bekannt, z.B. SbCls, PaC15). 

Randbedingungen 

Bei der Herleitung von mrglichen KristaUstrukturen 
fiir (MXs)2-Molek/ile sollen folgende Randbedingungen 
gelten: 

1. Die Halogenatome X sollen eine hexagonal-, 
doppelt-hexagonal- oder kubisch-dichteste Kugel- 
packung annehmen. 

2. Die Metallatome M sollen Oktaederl/icken dieser 
Packung besetzen, wobei die Strchiometrie festsetzt, 
dass es ein Fiinftel aUer Oktaederlficken sein muss. 

3. Damit der Aufbau aus (MXs)2-Molekiilen 
gew~ihrleistet ist, miissen immer die L/icken zweier 
benachbarter Oktaeder mit gemeinsamer Kante besetzt 
werden, die L/icken aller weiteren Nachbaroktaeder 
miissen unbesetzt bleiben. 

Bei Einhaltung dieser Randbedingungen sind nur 


